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Marangoni instability of a thin liquid film heated
from below by a local heat source
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(Received 3 January 2002 and in revised form 27 June 2002)

We consider the motion of a liquid film falling down a heated planar substrate. Using
the integral-boundary-layer approximation of the Navier–Stokes/energy equations
and free-surface boundary conditions, it is shown that the problem is governed by
two coupled nonlinear partial differential equations for the evolution of the local
film height and temperature distribution in time and space. Two-dimensional steady-
state solutions of these equations are reported for different values of the governing
dimensionless groups. Our computations demonstrate that the free surface develops
a bump in the region where the wall temperature gradient is positive. We analyse the
linear stability of this bump with respect to disturbances in the spanwise direction.
We show that the operator of the linearized system has both a discrete and an
essential spectrum. The discrete spectrum bifurcates from resonance poles at certain
values of the wavenumber for the disturbances in the transverse direction. The
essential spectrum is always stable while part of the discrete spectrum becomes
unstable for values of the Marangoni number larger than a critical value. Above
this critical Marangoni number the growth rate curve as a function of wavenumber
has a finite band of unstable modes which increases as the Marangoni number
increases.

1. Introduction
The role of surface tension gradients (Marangoni effect) as a cause of interfacial

instabilities has been established by the pioneering studies of Pearson (1958) and
Sternling & Scriven (1959). In the context of free-surface thin liquid films, a great
deal of theoretical work has been devoted to the effect of surface tension variation
on the evolution of the free surface (see for example Oron, Davis & Bankoff 1997
and Davis 1987). The (linear) stability of a planar liquid layer subject to a tempera-
ture gradient along the layer has been examined by Smith & Davis (1983a, b) while
Demekhin & Velarde (2001) investigated the linear stability of a falling film with a
temperature gradient on the wall. The combined effect of thermocapillary instability
and a number of physical factors such as evaporation/condensation, vapour recoil
and rupture due to long-range attractive van der Waals interactions has been consid-
ered by a number of authors (see for example Burelbach, Bankoff & Davis 1988 and
the review paper by Bankoff 1994). Joo, Davis & Bankoff (1991) investigated the ther-
mocapillary instability of a thin liquid film falling down a uniformly heated inclined
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plane and Oron & Peles (1998) and more recently Oron (1999) examined the stability
of a thin non-volatile liquid film in the presence of a spatially uniform heat source
within the liquid. A detailed review of interfacial thermocapillary phenomena is given
by Nepomnyashchy, Velarde & Colinet (2001).

In this study we consider the thermocapillary Marangoni instability of a thin liquid
film heated from below with a local heat source. The motivation arose from the
experiments reported recently by Kabov, Marchuk & Chupin (1996), Kabov et al.
(1999), Kabov (1998) and Scheid et al. (2000). In these experiments a vertically falling
thin liquid film is heated from the wall side by a heating device. The transverse
dimension of the heater is much longer than its width in the streamwise direction.
The heater generates a temperature distribution at the film surface which in turn
sets up surface tension gradients that drive the fluid away from the heated region.
This thermocapillary flow results in the formation of a (two-dimensional) bump in
the streamwise direction, the height of which increases as the heat flux supplied by
the heater to the liquid increases. At a certain critical value of the heat flux, an
instability in the transverse direction develops. This instability, which has a very
well-defined wavelength, takes the form of rivulets at the downstream edge of the
bump.

In this paper we develop a stability theory for the falling film heated from be-
low. Our analysis is based on the integral-boundary-layer approximation of the
Navier–Stokes/energy equations and free-surface boundary conditions. This approx-
imation results in a system of two coupled nonlinear partial differential equations
for the evolution of the local height and temperature of the free surface in time
and space. Steady states of these equations are reported for different values of
the governing dimensionless groups. Our computations reveal that in all cases the
free-surface profile develops a ridge upstream of the heater’s centre where the wall
temperature gradient is positive and a depression downstream of the heater’s cen-
tre where the wall temperature gradient is negative. We analyse the linear stability
of these two-dimensional steady states with respect to disturbances in the spanwise
direction. It is shown that the operator of the linearized system has both a con-
tinuous and a discrete spectrum. The discrete spectrum arises from resonance poles
at certain wavenumbers for the disturbances in the spanwise direction. The contin-
uous spectrum is always stable, while part of the discrete spectrum is destabilized
for values of the Marangoni number (which expresses the relative importance of
thermocapillary and viscous stresses) larger than a critical value. Above this crit-
ical Marangoni number the growth rate curve as a function of wavenumber has
a finite band of unstable modes which becomes larger as the Marangoni number
increases.

2. Formulation
We consider a thin liquid film of viscosity µ, surface tension σ and density ρ falling

down an inclined planar wall with inclination angle θ with respect to the horizontal
direction. Figure 1 sketches the flow situation. The wall is heated by a local heat
source, T = f(x), f(x) → 0 as x ± ∞, with T the temperature of the wall. This
temperature distribution can be produced, for example, by a heating device. This
heater, perpendicular to the plane of figure 1, supplies heat under the film flowing
over the substrate and generates a temperature distribution at the film surface which
in turn sets up surface tension gradients. These Marangoni stresses will drive the
fluid away from the heated region; however, sufficiently far from the heat source, the
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Figure 1. Sketch of the profile geometry for flow down a heated inclined plane. The film thickness
is h(x, z, t); h0 is the film thickness far from the heater.

falling liquid film is undisturbed with thickness h0 and velocity distribution

U =
g

ν
sin θ(h0y − 1

2
y2), (1)

which gives the Nusselt velocity u0 = gh2
0 sin θ/3ν where g the gravitational accelera-

tion and ν = µ/ρ the kinematic viscosity of the liquid.
Because of the extreme complexity of the full Navier–Stokes equation with non-

linear free-surface boundary conditions, most nonlinear studies on thin film flows
(with and without Marangoni effects) have been based on the long-wave lubrication
approximation (see for instance the review by Oron et al. 1997). With this approx-
imation, the Navier–Stokes equation reduces to a single, highly nonlinear, partial
differential equation commonly known as the evolution equation for the location
of the interface. In this study we adopt the integral-boundary-layer approximation
(IBL), first introduced by Shkadov (1967). Unlike the usual long-wave lubrication ap-
proximation, subsequently referred to as Benney’s approximation (see Benney 1966),
where relative orders of the film amplitude and the governing dimensionless groups,
namely Reynolds number and Weber number, are assigned a priori, the IBL equation
is derived with only the long-wave expansion and without overly restrictive stipula-
tions on the order of the amplitude and the dimensionless groups. The original IBL
approximation though was restricted to free-surface thin film flows in the absence
of thermal effects. Here, we extend the approximation to include heat transport and
we derive an averaged energy equation for the temperature distribution on the free
surface.

The starting point of the IBL approach is to assume long waves in both the x-
and z-directions, i.e. ∂/∂x, ∂/∂z � ∂/∂y and v, w � u with u, v and w the x, y and z
components of velocity respectively. With this assumption and after scaling x, y and
z with h0, velocities u, v, w with u0, time with h0/u0 (the time an interfacial particle
transverses a distance h0), pressure P with ρu2

0 and temperature T with ∆T (the
difference between the maximum temperature of the heat source and the temperature
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of the liquid far from the source), the equations of motion and energy equation are
simplified to

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+

3 cot θ

Re

∂h

∂x
= We

∂K

∂x
+

1

Re

(
∂2u

∂y2
+ 3

)
, (2a)

∂w

∂t
+
∂wu

∂x
+
∂wv

∂y
+
∂w2

∂z
+

3 cot θ

Re

∂h

∂z
= We

∂K

∂z
+

1

Re

∂2w

∂y2
, (2b)

∂T

∂t
+

∂

∂x
(Tu) +

∂

∂y
(Tv) +

∂

∂z
(Tw) =

1

Pe

∂2T

∂y2
, (2c)

where K denotes the curvature of the free surface in the long-wave approximation,
i.e. K = −(hxx + hzz). The Reynolds, Weber and Péclet numbers are defined as

Re =
1

3

gh3
0

ν2
sin θ, (3a)

We =
σ0

ρh0u
2
0

=
32σ0ν

2

ρg2h5
0(sin θ)2

=
31/3γ

Re5/3(sin θ)1/3
, (3b)

Pe = RePr = Re
a

ν
, (3c)

where σ0 the surface tension at a reference temperature T0 and a the thermal diffusivity
(= k/ρcP with cP the constant-pressure heat capacity and k the thermal conductivity
of the liquid phase). The Weber number in (3b) expresses the relative importance of
surface tension and inertia forces, unlike the usual definition of the Weber number as
σ0/(ρg sin θh2

0), i.e. the ratio of surface tension over gravity, used frequently in studies
of free-surface thin film flows (see for instance Nakaya 1975). Notice, however, that
ReWe = 3σ0/(ρg sin θh2

0). Also, γ = σ0ρ
−1ν−4/3g−1/3 is the Kapitza number, a popular

parameter among the Russian school, which is only a function of the fluid properties
and not the flow conditions, Pr is the Prandtl number and Pe the Péclet number that
expresses the relative importance of convection and conduction.

In the derivation of (2) from the full Navier–Stokes equation, we have neglected
the second derivatives ∂2/∂x2, ∂2/∂z2 of the velocity components compared to ∂2/∂y2

but we have kept the inertia terms (appropriately modified by using the continuity
equation ux + vy + wz = 0) and the pressure gradients Px and Pz – see the study
by Demekhin & Shkadov (1984) for a detailed derivation of (2). The pressure
is obtained from the long-wave expansion of the y-component of the equation
of motion, Py = −3 cot θ/Re, and the long-wave expansion of the normal stress
balance, P = −WeK at y = h(x, z, t), the location of the free surface. The result is
P = 3 cot θ(h−y)/Re−WeK . The analogy with the classical boundary-layer theory is
now clear: in the boundary-layer, inertia balances viscous diffusion in the y-direction
and the pressure gradient in the x-direction and it is this balance that gives rise to the
Blasius profile. However, unlike boundary-layer theory where the pressure gradient
is imposed by the inviscid flow and is related to velocity via Bernoulli’s equation, in
our case the pressure gradient is self-induced and caused by the capillary forces at
the interface.

Using a linear approximation for the surface tension,

σ = σ0 − κ(T − T0), (4)

with κ > 0 for typical liquids, the boundary conditions for the velocities u and w at
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the free surface are

∂u

∂y
= −Ma∂T

∂x
, y = h(x, z, t), (5a)

∂w

∂y
= −Ma∂T

∂z
, y = h(x, z, t), (5b)

the long-wave expansions of the tagential stress balance at the free surface. Ma is the
Marangoni number defined as

Ma =
κ∆T

µu0

=
3κ∆T

ρgh2
0(sin θ)2

(6)

and expresses the relative importance of thermocapillary and viscous stresses. The
boundary condition for T at the interface is Newton’s law of cooling in which the heat
flux normal to the interface is analogous to the temperature difference between the
interface and the ambient gas phase. The long-wave approximation of this condition
yields

∂T

∂y
+ Bi(T − Ta) = 0, (7)

where Bi = αh0/k, the Biot number, with α the heat transfer coefficient describing
the rate of heat transport from the liquid to the ambient gas phase at the constant
temperature Ta. We also have the kinematic boundary condition at the interface

∂h

∂t
+

∂

∂x

∫ h

0

u dy +
∂

∂z

∫ h

0

w dy = 0, y = h(x, z, t), (8)

and the no-slip boundary condition on the wall

u = v = w = 0, y = 0. (9)

Finally,

T = f(x), y = 0, (10)

with f(x) the temperature distribution generated by the heater on the wall.
An ad hoc and convenient simplification of the above equations and boundary

conditions can be made by assuming a self-similar parabolic profile beneath the film
(Schkadov 1967; Demekhin & Schkadov 1984). In the presence of Marangoni stresses
this profile is taken to be

u =
3q

h
(η − 1

2
η2) + 1

2
Ma

∂Ts

∂x
h(η − 3

2
η2), (11a)

w =
3p

h
(η − 1

2
η2) + 1

2
Ma

∂Ts

∂z
h(η − 3

2
η2), (11b)

where

η =
y

h(x, z, t)
(11c)

q =

∫ h

0

u dy, p =

∫ h

0

w dy, (11d)

with Ts the temperature of the interface and q, p the flow rates in the x- and z-
directions respectively. These velocity profiles satisfy the boundary conditions (5a, b)
and (9). In addition, the integrals of these profiles with respect to y (or the similarity
variable η) give the flow rates q and p, as they should (notice that η = y/h(x, z, t)
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is a natural similarity variable to use as the boundary conditions in terms of η are
applied at η = 0 and η = 1). Hence, the basic assumption here is that a parabolic
velocity profile, which satisfies the x-component of the equation of motion for zero
Reynolds number, persists even for large Reynolds numbers when the free surface is
no longer flat. This assumption has been verified experimentally for falling liquid films
(Alekseenko, Nakoryakov & Pokusaev 1994) in the regime of large Reynolds numbers,
Re < 500. It is well known that wave evolution in a falling film for large Reynolds
numbers is characterized by a train of soliton-like coherent structures with almost
the same amplitude and which interact indefinitely with each other (see Chang 1994
for a review). Measurements of the velocity profile in these solitary waves indicate
that the profile is parabolic throughout except perhaps in a small neighbourhood of
a ‘dimple’ that develops in front of the solitary humps where a deviation from the
parabolic profile was observed (this dimple is the first in a series of bow waves that
connect the steep front edge of a solitary wave to the flat film ahead).

Obviously, there are several other functional forms which satisfy the boundary
conditions at η = 0 and η = 1 instead of the ones chosen in (11a, b) (provided that
these functions do not induce a reverse flow in the absence of thermocapillary
effects). For example, in the absence of Marangoni stresses, η2 − (2/3)η3 is one such
function. One could then use a Galerkin-type approach to project the velocities
onto the (polynomial) test functions which satisfy the boundary conditions. For the
IBL approximation we choose the simplest test function, which in the absence of
Marangoni stresses is η− (1/2)η2. Linear stability calculations using this test function
also give good agreement with the linear stability from the full Navier–Stokes equation
(Ruyer-Quil 2001, personal communication – see also discussion on the validity of this
approximation by Ruyer-Quil & Mannevile 1998, 2000, 2002). At the same time, by
analogy with laminar boundary-layer theory, we anticipate that the error introduced
by the parabolic profile assumption is small – for example Pohlhausen’s assumption
of a fourth-order polynomial for the velocity profile in the boundary layer gives less
than 10% error for the thickness of the boundary layer compared to the Blasius
solution.

For the temperature distribution we assume

T = f(x) + [Ts(x, z, t)− f(x)]η, (12)

such that T = f(x) at η = 0 and T = Ts at η = 1. The assumption here is that the
linear temperature profile obtained for a flat film (and neglecting convective effects in
the heat transport process) persists even when the interface is no longer flat. Clearly,
this linear temperature profile does not satisfy the free-surface boundary condition
(7), unlike the test functions for the velocities in (11a, b), which satisfy all boundary
conditions, i.e. (5a, b) and (9). Hence, in weighted residual methods terminology,
the approximation (12) is a ‘mixed Galerkin method’ as the trial solution does not
satisfy either the equation or (all) the boundary conditions (the approximation for the
velocities is an ‘interior’ method as the trial functions satisfy the boundary conditions
but not the equations – see Ames 1977 for a classification). We now integrate the
momentum equation (2a, b) from y = 0 to y = h, multiply the energy equation (2c)
by y and integrate the resulting equation from y = 0 to y = h (this process is
analogous to the Kármán–Pohlhausen integral method in boundary-layer theory).
Several terms in these integral versions of the momentum and energy equations can
be simplified by performing integrations by parts. The terms originating from the
integrations by parts can be evaluated by using the boundary conditions (5a, b), (7),
(9) and (10). Notice that we have implicitly assumed ε2 � εMa � 1, with ε � 1
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the film parameter, the ratio of the average film thickness over a long scale in the
streamwise direction. Hence, the Marangoni terms in (11a, b) are of O(εMa) (due to
the long-wave approximation, ∂Ts/∂x, ∂Ts/∂z = O(ε)) so that they contribute only
to the viscous terms ∂2/∂y2 of (2a–c) and are neglected in the inertial/convective
terms of (2a–c) which are of O(εRe). Similar arguments can be used to show that
ε2 � εRe � 1, so that our IBL model contains terms of O(1), O(εMa), O(εRe) and
O(ε). Finally, we utilize (11a, b, d ) and (12) and after lengthy algebraic manipulations,
we obtain the averaged momentum and energy equations:

∂q

∂t
+

6

5

∂

∂x

q2

h
+

6

5

∂

∂z

qp

h
+

3 cot θh

Re

∂h

∂x
= Weh

∂K

∂x
+

3

Re

(
h− q

h2

)
− 3Ma

2Re

∂Ts

∂x
, (13a)

∂p

∂t
+

6

5

∂

∂x

qp

h
+

6

5

∂

∂z

p2

h
+

3 cot θh

Re

∂h

∂z
= Weh

∂K

∂z
− 3

Re

p

h2
− 3Ma

2Re

∂Ts

∂z
, (13b)

∂h

∂t
+
∂q

∂x
+
∂p

∂z
= 0, (13c)

∂Ts

∂t
− 7

40

∂q

∂x

f

h
− 7

40

∂p

∂z

f

h
+

7

40

∂q

∂x

Ts

h
+

7

40

∂p

∂z

Ts

h
+

21

40

∂f

∂x

q

h

+
27

20

∂Ts

∂x

q

h
+

27

20

∂Ts

∂z

p

h
=

3

Pe

[
−Bi(Ts − Ta)

h
− Ts − f

h2

]
. (13d)

We note that although (12) does not satisfy the free-surface boundary condition (7),
the averaged energy equation (13d ) does. Indeed, after we multiply (2c) with the
‘weight’ function, y, we perform integrations by parts and evaluate the boundary
terms which involve Ty from (7) and not (12) (which of course does not satisfy (7)).
We hence apply all boundary conditions prior to substituting the linear approximation
in (12). For example, multiply the diffusion term Tyy in (2c) by y and integrate from
y = 0 to y = h. The result is∫ h

0

yTyy dy = hTy|y=h − (T |y=h − T |y=0) = −hBi(Ts − Ta)− Ts + f.

Notice that the weight function for the energy equation is chosen so that the terms
resulting from integrations by parts involve either T at y = 0 or Ty at y = h, i.e. the
boundary conditions (7) and (10). Notice also that with this weight function points
near the interface (y = h) have a ‘larger weight’ than points near the solid boundary.

Obviously, to balance the curvature gradient with hx in (2a), ReWe must be a large
number, strictly speaking WeRe = O(ε−2) with respect to the long-wave parameter ε
that measures the gradient ∂/∂x. Hence, although the term WeReKx is formally of
third order and thus should not appear at this stage, WeRe is large enough so that
it enters the problem at the same level as ∂h/∂x. This observation originates from
the expression for the pressure: P = 3 cot θ(h − y)/Re −WeK . Hence, we take into
account the curvature term at a stage of the long-wave expansion earlier than its
formal order, in fact at the lowest possible order, i.e. by assuming that the capillary
forces contribute to the evaluation of the pressure at order zero. However, as we have
already pointed out, there is no stipulation on the relative order of Re and We.

The case ReWe � 1 studied here is commonly referred to as ‘the strong surface
tension case’. It applies to water and most other liquids but not to fluids with low
surface tension, like glycerin. The danger in a priori assigning relative orders of Re,
We and film amplitude with respect to the long-wave parameter ε, as in Benney’s
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approximation, was recognized by Benney himself. He found that his weakly nonlinear
expansions yield either the Burgers equation, the KdV equation, or others depending
on the specific assignments made. Since Re and We are independent parameters that
specify the wave height and wavelength in terms of the long-wave parameter, these a
priori assignments often yield equations that cannot describe the full range of waves
in falling films. As a result, shock formation for the Burgers equation and unrealistic
large-amplitude solutions in certain regimes of the parameter space (Rosenau, Oron
& Hyman 1992), including finite-time blow-up behaviour for sufficiently large sets
of smooth initial data, occur when these equations are integrated in time and as
the waves attempt to evolve into ones beyond their description. In addition, the
physical relevance of Benney’s equation has been shown to be confined to quite thin
films (Oron & Gottlieb 2002). At the same time the IBL approximation has been
successful in describing solitary wave dynamics on a falling film and without any
unrealistic blow-up behaviour (see for instance Chang, Demekhin & Kopelevich 1993
and Chang 1994). Quantitative agreement between the solitary waves obtained from
the IBL equation and experimental wave tracings has also been established by the
same authors for Re < 500. Hence, in the presence of inertia the IBL approximation
for the momentum equations can be considered as the model equation of choice
(short of the complete Navier–Stokes equation of course).

For small Reynolds numbers, the inertia terms in (13a, b) can be neglected and the
flow rates q, p are adiabatically slaved to the film thickness h(x, z, t) and they depend
on time only through the dependence of h(x, z, t) on time:

q = h3 +
WeRe

3
h3 ∂K

∂x
− cot θh3 ∂h

∂x
− 1

2
Mah2 ∂Ts

∂x
, (14a)

p =
WeRe

3
h3 ∂K

∂z
− cot θh3 ∂h

∂z
− 1

2
Mah2 ∂Ts

∂z
. (14b)

Substituting these expressions into the kinematic boundary condition (13c) gives an
evolution equation for the variation of h:

∂h

∂t
+

∂

∂x

(
h3 +

WeRe

3
h3 ∂K

∂x
− cot θh3 ∂h

∂x
− 1

2
Mah2 ∂Ts

∂x

)
+
∂

∂z

(
WeRe

3
h3 ∂K

∂z
− cot θh3 ∂h

∂z
− 1

2
Mah2 ∂Ts

∂z

)
= 0. (15)

Therefore, the equation for the film thickness in the limit of vanishing inertia becomes
identical to the usual lubrication approximation without inertia. Hence, the usual
long-wave expansion for Re = 0 is a limiting case of the IBL approximation. This
limit of vanishing inertia is consistent with the experiments reported by Kabov et al.
(1996, 1999), Kabov (1998) and Scheid et al. (2000) which indicate that the instability
develops for a large region of Reynolds numbers including small Reynolds numbers
and those as large as O(1) or larger.

Equations (15) and (13d ) with the flow rates given by (14a, b) are the basic equations
for the analysis to follow. Hence, unlike the flow rates, the temperature distribution
on the free surface is not slaved to the film thickness and although the film thickness
is described by the usual long-wave approximation (effectively Benney’s equation
without inertia) the temperature distribution on the free surface is described by the
IBL approximation of the energy equation. The assumption that the temperature
field is adiabatically slaved to the film thickness has often been used in the literature
(Joo et al. 1991; Burelbach et al. 1988; Bankoff 1994; Oron 1999; Oron & Peles
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1998). From (13d ) this is effectively the case when Pe � 1. In this limit, convection
is negligible compared to heat diffusion and the interface temperature is simply given
by

Ts =
f + BiTah

1 + Bi h
. (16)

Substitution of this temperature distribution in (15) gives the evolution equation
for the film thickness used for example by Joo et al. (1991). The same temperature
distribution was also adopted recently by Scheid et al. (2001). These authors used
Benney’s equation with inertia to describe the one-dimensional evolution of the
interface for the thermocapillary problem considered here. They performed time-
dependent computations of Benney’s equation for the one-dimensional evolution of
the free surface and for a uniform wall temperature distribution or a sinusoidal
function of x. They reported a variety of solutions including oscillatory modes,
travelling waves and standing waves.

Obviously, if the interface is a poor conductor and perfectly insulated from the gas,
Bi � 1, and (16) shows that Ts = f(x). This assumption was utilized by Gramlich
et al. (2002) in their study of optimal levelling of free-surface thin film flows over
topography by means of a thermocapillary stress induced by a localized heater on
the topographical substrate. However, for the thermocapillary instability problem
considered here, the experiments by Kabov et al. (1996, 1999), Kabov (1998) and
Scheid et al. (2000) clearly indicate that the temperature distributions on the free
surface are very different from (16). In fact, the Péclet number in these experiments
is O(1) or even larger and clearly convection at finite Péclet number will lead to a
convective distortion of the surface temperature profile (16), which assumes negligible
convection. Therefore, the temperature field is convected downstream and hence we
utilize the full convection/diffusion equation (13d ) coupled to the evolution equation
for the film thickness (15).

3. Steady states
Let us now consider two-dimensional stationary solutions of the system (13d )

and (15) with the flow rates given from (14a, b). With h = h(x), q = 1, p = 0 and
Ts = Ts(x), we obtain a system of two coupled ordinary differential equations for h(x)
and Ts(x):

ReWe h
d3h

dx3
− 3 cot θ

2Re

dh

dx
− 3Ma

2Re

dTs
dx

+ 3

(
h− 1

h2

)
= 0, (17a)

9

20

dTs
dx

+
7

40

df

dx
+
Bi

Pe
Ts =

1

Pe

f − Ts
h

, (17b)

where we assumed Ta = 0 without loss of generality. The wall temperature profile is
taken to be

f(x) = e−bx
2

, b = 0.005, (18)

which can be viewed as a model of a wire enclosed by a partially thermally conductive
material. (In the thermocapillary levelling study by Gramlich et al. 2002 a variety
of wall temperature profiles was examined including (18) and a rectangular ‘top-hat’
temperature distribution as a model of a resistively heated wire perfectly insulated at
the upstream and downstream edges.) The boundary conditions for (17) are h→ 1 as
x → ±∞ with all the derivatives of h approaching zero at the infinities and Ts → 0
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as x → ±∞ (i.e. Ts approaches the ambient temperature) with all the derivatives of
Ts approaching zero at the infinities as well.

A point to be noted here is that the wall temperature distribution in (18) introduces
a lengthscale in the streamwise direction analogous to b−1/2. Hence, unlike the case
of a liquid film falling down a uniformly heated plane, where the long scale in the
streamwise direction is not known a priori, for the problem of a falling film heated
from below by a local heat source, this lengthscale can be taken as the characteristic
lengthscale of the wall temperature distribution. We could then consider a long-
wave expansion with respect to two small parameters: the film parameter ε, and the
small parameter that measures the ratio of the amplitude of the wall temperature
distribution (this is 1 for the function in (18)) and the scale in the streamwise direction,
say ε1. Here we have implicitly assumed the distinguished limit ε ∼ ε1 or b ∼ ε2 in
the derivation of our IBL approximation.

We solve (17a, b) numerically with a global Fourier spectral expansion in the
streamwise coordinate x:

h(x) =

∫ +∞

−∞
H̃(ω) eiωx dω '

+N∑
−N

Hke
iδkxδ, (19a)

Ts(x) =

∫ +∞

−∞
T̃ (ω) eiωx dω '

+N∑
−N

Tke
iδkxδ, (19b)

Hk = H∗−k, Tk = T ∗−k, (19c)

where H̃ , T̃ are the Fourier transforms of h, Ts, i.e. we seek the solutions in terms
of Fourier integrals which for numerical purposes are approximated by sums, with
δ = 2π/L where L is the periodicity interval in the x-direction. Hkδ and Tkδ are
the discrete approximations of H̃ and T̃ . This definition facilitates the numerical
implementation of our pseudospectral method as it makes the coefficients Hk and Tk
relatively independent of the periodicity interval L. Equation (19c) ensures that the
sums in (19a, b) are real quantities (the stars in (19c) denote complex conjugation).
We then substitute (19a, b) into (17a, b) and apply the resulting equations at 4N + 2
points in the interval [−L/2, L/2]. Therefore, we obtain a set of (4N + 2) nonlinear
algebraic equations for the (4N + 2) unkowns in (19a, b) which we solve using
Newton’s method. The nonlinear terms in (17a, b) are calculated in physical space
and the Newton iteration, which involves inversion of a sparse matrix containing the
projected linear terms, is carried out in Fourier space with the aid of a fast Fourier
tranform.

The initial guess in Newton’s method is obtained from the limit Ma → 0. In this
limit, the influence of the temperature field on the free surface is small and as a first
approximation we can take h = 1 and solve the linear energy equation

dTs
dx

+
20

9

1 + Bi

Pe
Ts = − 7

18

df

dx
+

20

9

1

Pe
f, (20)

which can be easily solved analytically in Fourier space for a given f (that is localized
and decays sufficiently fast at infinity). With Ts known from (20), we turn to the
free-surface equation (17a) and obtain h by assuming that the deviation from 1 is
small, i.e. h = 1 + h̄, h̄� 1:

ReWe
d3h̄

dx3
− (3 cot θ + 9)

dh̄

dx
= 3

2
Ma

dTs
dx

(21)
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for some small value of Ma. This equation can also be solved analytically in Fourier
space. Using the solution found for small Ma as initial guess for Newton’s method,
we utilize a continuation technique to continue the solution to the region of large
Marangoni numbers. The accuracy of the numerical scheme was determined by
variation of the domain size and number of points in the domain.

We found that convergence of this numerical scheme required a large number
of harmonics, mainly due to the mixed parabolic/hyperbolic character of our IBL
system (17a, b) and the fact that the resulting temperature profile on the free surface
is much more localized than the free surface itself. Hence, from a numerical point of
view it is more efficient to avoid solving for h(x) and Ts(x) simultaneously unless we
introduce in (17) a second derivative Tsxx multiplied by a small parameter, in which
case convergence is substantially improved. Alternatively, we implement a domain
pertubation scheme in which we solve the convection/diffusion equation (17b) to
obtain the temperature distribution on the free surface, assuming the free surface is
flat. Using this temperature profile, we solve for the free-surface deflection in (17a)
and we subsequently substitute the new free-surface profile into (17b). We repeat
this process until convergence for both h and Ts is achieved (we also utilized a
continuation technique with respect to Ma).

Figure 2 shows typical free-surface profiles at different Marangoni numbers for
θ = π/2, Re = 1, Bi = 1, γ = 2850 and Pr = 7 (these values of γ and Pr are for water
at 25◦). Obviously, the value Re = 1 violates the basic assumption of small inertia
for the derivation of (15) and its steady version (17a). The issue of whether or not
the inertia terms of the IBL approximation introduce fundamentally new features or
just a quantitative correction to the usual long-wave expansion for the free surface in
(15) will be treated in a future paper. Alternatively, figure 2 depicts the free surface
at different values of Marangoni numbers for θ = π/2, Bi = 1, WeRe = 4110 and
Pe = 7. These values of the flow parameters do allow for small Re and at the same
time the assumption WeRe� 1 for the IBL approximation (2) is satisfied.

As can be seen from figure 2, the free-surface profile has a depression just down-
stream of the location of the heater, x = 0, where the wall temperature gradient is
negative and a ridge just upstream of x = 0 where the wall temperature gradient
is positive. A bump on the free surface has also been observed in the experimental
studies by Kabov et al. (1996, 1999), Kabov (1998) and Scheid et al. (2000). This
standing wave appears as a result of the nonlinear interaction between the liquid
flowing downstream due to gravity and the reverse thermocapillary flow induced by
the heater (in fact Kabov refers to this standing wave as the ‘liquid roller’). Notice
from figure 2 that the height of the bump increases as the Marangoni number in-
creases. This observation is also consistent with the experiments in which the height
of the bump was found to be an increasing function of the heat flux provided by the
heater.

The steady states for thin film flows over planar walls heated by local heat sources
have also been examined using standard lubrication theory by Gramlich et al. (2002),
Marchuk & Kabov (1998) and Scheid et al. (2001). A variety of wall temperature dis-
tributions was examined by Gramlich et al. (2002) while Scheid et al. (2001) adopted
the difference between two inverse tangent functions as a model for the wall temper-
ature shape. All these authors observed bumps on the free surface located roughly
at the point where the wall temperature distribution has a maximum. Marchuk &
Kabov (1998), in particular, used two different boundary conditions on the solid
boundary: a given temperature distribution and a given flux. In some cases the wall
temperature distribution was chosen so that the total heat flux from the heater to
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Figure 2. Free-surface profiles at different Marangoni numbers for θ = π/2, Re = 1, γ = 2850,
Pr = 7 and Bi = 1.

the film was in agreement with the specified heat flux. Interestingly, both boundary
conditions gave similar results for the free surface.

Figure 3 depicts the temperature distributions on the free surface for the profiles
in figure 2. Unlike the wall temperature, the free-surface temperature is asymmetric,
with a maximum downstream of the heater’s centre at x = 0: due to the finite Péclet
number convection the temperature field is convected downstream. Notice that the
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Figure 3. Temperature distributions on the free surface for the profiles in figure 2.

temperature maximum increases slowly as the Marangoni number Ma increases (un-
like the maximum of the free surface height which increases faster asMa increases – see
figure 2). Finally, when the wall temperature is very localized in space, effectively ap-
proaching a Dirac function (this is the case of large b), Ts approaches the derivative
of a Dirac function and will take negative values in a small region upstream of the
heater’s centre. As Ts is always positive (or larger than the temperature of the ambient
gas phase – recall that we set Ta = 0 in (17) and hence figure 3 shows the surface tem-
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perature relative to the ambient temperature) negative temperatures are a consequence
of the long-wave approximation which is expected to break down when the gradient
of the forcing function f is large. Hence, provided that b � 1, for the long-wave
approximation to be valid, the interface temperature distribution is always positive.

4. Linear stability
We now examine the stability of the steady states computed in the previous section

with respect to infinitesimal disturbances in the spanwise direction. Let

h→ h(x) + vĥ(x) eλteiβz + c.c., (22a)

Ts → Ts(x) + vT̂ (x) eλteiβz + c.c., (22b)

with v � 1. Substituting these normal modes into the system (13d ), (14a, b) and (15)
and utilizing the steady-state equations (17a, b), yields the infinite-domain eigenvalue
problem

L
[
ĥ

T̂

]
+ λ

[
ĥ

T̂

]
= 0 (23a)

with boundary conditions

ĥ, T̂ bounded as→ ±∞. (23b)

The elements of the matrix/differential operator L = [Lij] are defined as

L11 = S1

d4

dx4
+ S2

d3

dx3
+ S3

d2

dx2
+ S4

d

dx
+ S5, (24a)

L12 = S6

d2

dx2
+ S7

d

dx
+ S8, (24b)

L21 = G1

d4

dx4
+ G2

d3

dx3
+ G3

d2

dx2
+ G4

d

dx
+ G5, (24c)

L22 = G6

d2

dx2
+ G7

d

dx
+ G8, (24d)

where the coefficients Gi and Si are given in the Appendix.
The boundary conditions in (23b) allow for eigenfunctions which do not decay

to zero but approach bounded oscillations at the infinities. We shall demonstrate
that there are two types of singularities associated with the spectrum of L: discrete
eigenvalues and the continuous essential spectrum. The discrete spectrum consists of

decaying eigenfunctions with ĥ(±∞) = T̂ (±∞) = 0. These eigenfunctions correspond
to disturbances localized around the base state. The continuous spectrum consists of
those eigenfunctions with bounded oscillatory behaviour as x → ±∞ and unlike the
discrete modes, the essential modes can alter the base flow/temperature distribution
far from the ridge/depression configuration of figure 2 and can be associated with
disturbances on the thin film regions away from the heater. Such disturbances,
sufficiently far from the heater, must be expressed in terms of the continuous modes
which do not decay to zero but approach bounded oscillations at the infinities –
but still within the bounds where the infinite-domain formulation is valid. This
is analogous to expansion of finite-mass disturbances with Fourier modes. Such
disturbances correspond to step changes in the average interfacial height/temperature
which generate effective point sources or sinks of liquid or heat. At the same time,
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as the continuous eigenfunctions do not decay to zero at the infinities, they represent
spatially global modes reflecting the response of the base state away from the heater.

The rivulet instability observed in the experiments by Kabov et al. (1996, 1999),
Kabov (1998) and Scheid et al. (2000) is reminiscent of another free-surface thin film
problem where a ridge is also present: the problem of a contact line driven by a
body force (Troian et al. 1989; Bertozzi & Brenner 1997; Spaid & Homsy 1996). In
the moving contact line problem, the formation of the ridge is due to the response
of the free surface to pressure build-up in the vicinity of the contact line as a result
of the kinematic requirement that the streamwise velocity gradually decays as the
contact point is approached and then reverses as fluid leaves the contact line region
(Goodwin & Homsy 1991). This capillary ridge is known to become unstable to
spanwise perturbations and such instabilities have been analysed by a number of
authors (Troian et al. 1989; Bertozzi & Brenner 1997; Spaid & Homsy 1996; Kondic
& Bertozzi 1999; Ye & Chang 1999; Kalliadasis 2000). We note that for the driven
contact line problem on a planar inclined substrate, the pertinent eigenvalue problem
for β = 0 has a one-dimensional null space spanned by the eigenfunction associated
with the translational invariance of the system in the streamwise direction (Troian
et al. 1989). This translational invariance manifests itself as a null eigenfunction at
β = 0 corresponding to the eigenvalue λ = 0 (Kalliadasis 2000) and as the system
possesses no other symmetry except the translational invariance, the zero eigenvalue
is generically simple. In our case, however, the presence of the heater, which provides
a temperature distribution f(x) on the wall, breaks the translational symmetry and
hence λ = 0 is not an eigenvalue for disturbances of infinite wavelength that decay
to zero at infinity.

Hence, the situation here is similar to the stability of free-surface thin film flows
over topography recently examined by Kalliadasis & Homsy (2001). In this case,
the capillary pressure induced by the topography creates interfacial curvature and
therefore a capillary pressure that influences the flow features, and for a step-down
in topography causes the formation of a capillary ridge just before the entry to the
step. Kalliadasis & Homsy analysed the stability of this capillary ridge with respect to
infinitesimal disturbances in the spanwise direction and demonstrated that it is stable
for all values of the pertinent dimensionless groups. However, for the thermocapillary
problem considered here, we shall demonstrate that there exists a critical Marangoni
number above which the base flow of figure 2 becomes linearly unstable with respect
to disturbances in the spanwise direction.

The behaviour of the eigenfunction [ĥ, T̂ ]t as x→ ±∞ can be determined by setting
h = 1 and Ts = 0 in (23a). In this case L becomes a matrix/differential operator
with constant coefficients and the eigenvalue problem takes the form

λĥ+ 3ĥ′ +
ReWe

3
(ĥiv − 2β2ĥ′′ + β4ĥ) = 0 (25a)

λT̂ +
27

20
T̂ ′ +

3(1 + Bi)

Pr Re
T̂ = 0. (25b)

Substituting ĥ ∼ eσx in (25a) gives a fourth-order characteristic polynomial for σ
parameterized by λ and β. Hence, there are four ‘spatial’ eigenvalues for a given λ =
λR+iλI in the (λR, λI ) spectral plane. For some specific values of λ, σ is purely imaginary
and equal to iα. This is the locus Γ1 of the essential spectrum and is defined by

Γ1 =

{
α:
ReWe

3
(α2 + β2)2 + 3iα+ λ = 0, α ∈ (−∞,+∞)

}
. (26a)
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Figure 4. Loci of the essential spectrum Γ1 and Γ2 in the spectral plane (λR, λI ) at different
wavenumbers β for θ = π/2, Re = 1, γ = 2850, Pr = 7 and Bi = 1.

The essential eigenfunctions ψ(x, α) on Γ1 approach bounded oscillations with wave-
number α at the infinities, i.e. ψ(x, α)→ eiαx as x→ ±∞.

Consider now (25b). Notice that G6 → 0 as x→ ±∞ since both Ts and f approach
zero at the infinities (see the definition of G6 in the Appendix). Therefore T̂ satisfies a
first-order ordinary differential equation as x→ ±∞. The only bounded (non-trivial)
solution to this equation is T̂ = const. for λ in the locus Γ2 of the continuous spectrum
defined from

Γ2 =

{
α:

3(1 + Bi)

Pe
+

27

20
iα+ λ = 0, α ∈ (−∞,+∞)

}
. (26b)

Hence, there are two branches for the essential spectrum in the complex-λ spectral

plane. We note that there is no coupling between ĥ and T̂ as x→ ±∞; obviously this
is not the case in the neighbourhood of the heater. Figure 4 depicts both branches Γ1

and Γ2 for θ = π/2, Re = 1, γ = 2850, Pr = 7, Bi = 1 and different β. Decreasing β
shifts the Γ1 branch to the left and eventually Γ1 passes through the origin for β = 0.
The second branch Γ2 is simply a straight line parallel to the λI -axis and independent
of β. Clearly both branches of the essential spectrum are stable with λR 6 0. Hence,

whether the disturbances ĥ and T̂ grow in time is solely determined by the discrete
part of the spectrum.

However, the disturbances must be written as a superposition of both the continu-
ous and discrete modes:

ĥ(x, t) =

∫ +∞

−∞
A(α)ψ(x, α) eλ(α)t dα+

N∑
1

Akψk(x) eλkt (27)

as the complete set of functions is formed by combining the eigenfunctions of
both spectra – a similar expansion can also be written for the temperature field.
Here ψ(x, α) are the essential eigenfunctions and ψk(x) the discrete modes. The
coefficients A(α) and Ak of the eigenfunction expansion in (27) depend on the initial
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condition for the initial value problem for the disturbances ∂[h, Ts]
t/∂t+L[h, Ts]

t = 0,
with h = h0(x), Ts = Ts0(x) at t = 0, limx→±∞ h0(x) = 0, limx→±∞ Ts0(x) = 0, and can
be evaluated by taking the appropriate inner products with the adjoint discrete
and continuous eigenfunctions; the adjoint operator L∗ of L can be found from
〈LF ,G〉 = 〈F ,L∗G〉 with respect to the usual L2(−∞,+∞) inner product 〈F ,G〉 =∫ +∞
−∞ F

t · G dx for any two vector functions F , G in (−∞,+∞). However, the exact
values of the coefficients in (27) are not important as long as the initial condition is
sufficiently rich that the pertinent A(α) and Ak are not zero.

We numerically construct both the discrete and essential spectra with a global

Fourier spectral expansion for the eigenfunction [ĥ, T̂ ]t:

ĥ(x) =

+N∑
−N

ĥk eiδkxδ, (28a)

T̂ (x) =

+N∑
−N

T̂ k eiδkxδ, (28b)

where δ = 2π/L with L the periodicity interval in the streamwise direction. The
infinite interval corresponds to the limit δ → 0. Substituting (28a, b) into (23a) and
isolating the terms associated with the same harmonics yields a homogeneous system

of linear algebraic equations for the (4N + 2) complex unkowns ĥk and T̂ k . For the
system to have non-trivial solutions it is necessary and sufficient that its principal
determinant be equal to zero. Thus, we have converted the differential eigenvalue
problem into an algebraic eigenvalue problem of the form

det ||A− λI || = 0, (29)

where A is a (4N + 2) × (4N + 2) matrix and I is the unitary matrix. Therefore,
both essential and discrete eigenvalues of L are now represented by the eigenvalues
of the matrix A. To obtain the elements of A from (23a) we used forward and
backward Fourier transforms for the coefficients Si, Gi in (24). The eigenvalues were
obtained by reducing the matrix to an upper Hessenberg form followed by a standard
QR algorithm. The accuracy of the scheme was confirmed by increasing N and the
periodicity interval L.

A point to be noted is that infinite-domain eigenvalue problems like (23a) can also
be solved with the Evans function method. The key element of the Evans function
theory, which was introduced by Evans (1972) in his study on nerve impulse stability
in relation to the Hodgin–Huxley nerve axon equations, is to define the discrete
eigenvalues as the zeros of an analytic function of λ, the Evans function. In our case,

there is a four-dimensional set of solutions associated with ĥ (recall that there are
four spatial eigenvalues for a given λ – see (25a)). The eigenvectors (of the dynamical

system (23a) for φ, φx, φxx, φxxx) with φ the eigenfunction [ĥ, T̂ ]t) associated with
the spatial eigenvalues with negative real parts form a basis for the subspace of
solutions that approach zero as x → ∞, while the eigenvectors associated with the
spatial eigenvalues with positive real parts form a basis for the subspace of solutions
that approach zero as x → −∞. Then λ is an eigenvalue if the two subspaces have
a non-trivial intersection. That is, we need a condition for the intersection of two
linear subspaces of functions. The condition is that the Evans function, defined to
be the Wronskian of the basis functions of the two subspaces, should vanish. This
is effectively a solvability condition. In our numerical scheme a solvability condition
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must also be satisfied (see (29)) and in that sense the global Fourier spectral expansion
employed here for the solution of the eigenvalue problem can be viewed as an implicit
representation of the Evans function method.

A number of authors have constructed spectra of infinite-domain eigenvalue prob-
lems. For example Chang, Demekhin & Kopelevich (1996) and Chang, Demekhin &
Kalaidin (1998) obtained the spectrum that governs the stability of pulse solutions of
the generalized Kuramoto–Sivashinsky equation. Chang & Demekhin (1999) exam-
ined the spectrum of solitary waves on a thin film falling down a vertical fibre while
Ye & Chang (1999) investigated the discrete/essential spectrum for the driven contact
line problem down a prewetted plane. More recently Kalliadasis & Homsy (2001)
considered the spectrum of the infinite-domain eigenvalue problem that determines
the stability of free-surface thin film flows over topography. In all these studies (the
spectra were defined and constructed using the Evans function method) the essential
spectrum has been associated with the flat-film Fourier modes. This observation de-
serves special attention. In our case, if the base state is a flat film of unit thickness the
spectrum will consist of the continuum of Fourier modes eλt+iαx+iβz with the dispersion
relationship

λ = −3iα− ReWe

3
(α2 + β2)2,

which is exactly the locus of the essential spectrum Γ1 in (26a). The reason is simply
that the free-surface bump in figure 2 decays to the flat film at both infinities and the
oscillations of the eigenfunctions must also be described by the flat-film dispersion
relationship (however, the normal modes of the flat film h = 1 are modified in the
vicinity of x = 0 due to the presence of the bump). Since λR < 0, the flat-film regions
of thickness 1 are stable. Indeed, as has been shown by Benjamin (1957) a thin
flat film can only be destabilized with small but finite inertia. From the dispersion
relation above we also obtain λI = −3α. Thus the normal modes on the flat-film
regions represent monochromatic infinitesimal disturbances that travel steadily with
the kinematic wave velocity −λI/3. As λI is a linear function of α, the regions h = 1
away from the free-surface bump in figure 2 are also non-dispersive. Thus, any
localized disturbances away from the bump will not spread but will propagate at the
phase velocity 3 and at the same time decay at the rate λR .

Typical computations of both the essential and discrete spectrum are shown in
figure 5(a) for β = 0. Here we used N = 200 for the Fourier expansion in (28). The
crosses and stars are the eigenvalues of A. As N →∞ and δ → 0 the distance between
the crosses tends to zero and this part of the matrix spectrum tends to the essential
spectrum of L. The mode indicated with a star is the only eigenvalue which is not
affected by increasing N and decreasing δ (provided of course that N is sufficiently
large and δ sufficiently small). This real mode represents a discrete mode of L (a
second real discrete mode at large negative values not shown in the figure is also
present). Figure 5(b) shows the computed essential/discrete spectrum for β = 0.02.
Now the branch Γ1 of the essential spectrum has moved to the left (recall that Γ2 is
independent of β) and there is an additional discrete real mode on the positive real
axis – the large negative discrete mode has now moved to −∞.

The generation of this second discrete mode is related to the existence of a
‘resonance pole’. Such resonance poles appear in quantum scattering theory (Reed &
Simon 1978) and they have been associated with the so-called ‘Landau damping’ in the
Vlasov–Poisson system (Crawford & Hislop 1989). Resonance poles have also been
found in stability studies of solitary pulses of the generalized Kuramoto–Sivashinsky
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Figure 5. Typical essential and discrete spectra of L for the parameter values in figure 4 and
Ma = 60. The dashed line is the branch Γ2 of the essential spectrum obtained from (26b). Crosses
and stars are the eigenvalues of A corresponding to the essential and discrete spectrum respectively.
Also shown is the branch Γ1 of the essential spectrum obtained from (26a). (a) β = 0, one discrete
mode; (b) β = 0.02, two discrete modes.

equation (Chang et al. 1996, 1998). We note that the corresponding ‘eigenfunctions’
of resonance poles have unbounded (exponential) growth at one of the infinities and
hence resonance poles are not true eigenvalues. However, as β varies, a resonance
pole can cross the essential spectrum and become a true discrete eigenvalue, and vice
versa. In figure 5(a), a resonance pole between a discrete mode and the origin of the
spectral plane crosses Γ1 as β increases and gives birth to a discrete eigenvalue. As the
‘eigenfunctions’ of resonance poles have unbounded growth at one of the infinities,
they cannot be captured by our global Fourier spectral expansion. We shall describe
below a modified numerical scheme to locate resonance poles.

Figure 6 shows the generation and destruction of discrete eigenvalues to form
resonance poles (and vice versa) at the branch Γ1 of the essential spectrum (this
transition always happens on Γ1) for the parameter values in figure 4 and Ma = 10.
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Figure 6. Structure of the spectrum for the parameter values in figure 4 and Ma = 10. The dashed
line indicates the branch Γ2 of the essential spectrum. The star corresponds to a discrete mode and
the open circle to a resonance pole. (a) β = 0, (b) β = 0.0107, (c) β = 0.02.

At β = 0 the branch Γ2 of the essential spectrum goes through the origin with a
resonance pole (open circle) located on the λR-axis between Γ1 and Γ2. As β increases
branch Γ1 of the essential spectrum moves to the left of the spectral plane and at
β = 0.0107 the resonance pole is embedded in the essential spectrum. For larger
values of β this resonance pole becomes a discrete eigenvalue while the original



Marangoni instability of a heated thin liquid film 397

discrete mode in figure 6(a, b) crosses Γ1, as Γ1 moves to the left, and becomes a
resonance pole. Hence there are two possible transitions: either a resonance pole to
the left of Γ1 becomes a discrete mode to the right or a discrete mode to the left of Γ1

becomes a resonance pole to the left. The creation/destruction of a discrete mode is
related to the essential eigenfunction for α = 0 on Γ1. Recall that Γ1 is parameterized
by the wavenumber α of oscillations of the continuous eigenfunctions as α ±∞. As
α → 0 the essential modes on Γ1 approach the λR-axis and the wavelength of the
oscillations becomes infinitely large. As a result this limiting eigenfunction for α = 0
approaches constants, say c±, as x → ±∞. Notice that all essential modes for α 6= 0
are complex except for the limiting eigenfunction at α = 0, which is real.

Consider the case of a resonance pole to the left of Γ1 becoming a discrete
mode to the right. As β approaches a certain value, say β1, c+ → 0 and the discrete
mode generated at β1 has the same shape as the continuous mode at this point but
approaches zero very slowly as x→ −∞. At the same time, as β → β1, the resonance
pole has the same shape as the continous mode for α = 0 but it blows up slowly
towards large positive values as x → −∞. As β deviates from β1 the width of the
discrete mode decreases rapidly. Now consider the case of a discrete mode to the left
of Γ1 becoming a resonance pole to the right. As β approaches a certain value, say
β2, c− → 0 and the discrete mode has the same shape as the continuous eigenfunction
for α = 0 but approaches zero very slowly as x→ +∞. The resonance pole generated
at β2 also has the same shape as the continous eigenfunction for α = 0 but blows up
slowly towards large positive values as x→ +∞.

Following Pego & Weinstein (1992) and Reed & Simon (1978) the locus of the
essential spectrum can be considered as a branch cut that separates two Riemann
sheets of the Evans function: one Riemann surface has the resonance poles to the
left of Γ1 with the discrete modes to the right and the other Riemann surface has the
discrete modes to the left of Γ1 with the resonance poles to the right. The eigenvalues
which cross Γ1 to become resonance poles effectively move from one Riemann sheet
to the other (this type of bifurcation is rather unusual for eigenvalue problems in a
finite domain). To locate these resonance poles we have to suppress their growing tails
at the infinities. Pego & Weinstein (1992) pointed out that resonance poles can be
regarded as true eigenvalues of an appropriately weighted space. Pego & Weinstein
(1994) suggested that if one places a weight that decays exponentially in the direction
of unbounded growth for the resonance pole, this growth can be filtered away. Hence,
we place a spatial filter eξx with ξ an arbitrary real number larger than the more
negative real part of the spatial eigenvalues as x→ −∞ and smaller than the largest
positive real part of the spatial eigenvalues as x→ +∞ (as this spatial mode with the
largest positive real part has been suppressed, eξx will also be suppressed as x→ +∞).
Hence, we introduce the weighted eigenfunctions

ψ̂(x) = eξxĥ(x), (30a)

θ̂(x) = eξxT̂ (x). (30b)

The new eigenvalue problem now has the form

Lξ

[
ψ̂

θ̂

]
+ λ

[
ψ̂

θ̂

]
= 0 (31)

where the operator L in (23a) is transformed to the weighted operator

Lξ = eξxL e−ξx.
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This eigenvalue problem is numerically solved with the global Fourier spectral expan-
sion used for the original eigenvalue problem in (23a). It is clear that the branch Γ1ξ

of the essential spectrum of Lξ is defined by shifting Γ1 of L by the transformation
α→ α+ iξ,

λ = −3i(α+ iξ)− ReWe

3
[(α+ iξ)2 + β2]2. (32)

The second branch of the essential spectrum is also shifted in the same way.

Resonance poles will have a direct influence on the time-dependent behaviour of
the system. Stable resonance poles, for example, are responsible for determining the
decay rate and drainage dynamics of excited solitary pulses when excess mass is added
to equilibrium pulses (Chang et al. 1996, 1998; Chang & Demekhin 1999). This mass
is carried by localized disturbances on the flat-film regions which generate expanding
radiation wave packets that threaten to engulf the pulse unless the pulse outruns or
is outrun by the expanding growing wave packet. Hence, such eigenmodes can be
used to describe the transient dynamics between stable solitary pulses and radiation
modes and have been intimately related to convective stability of solitary pulses.
For our problem, the influence of resonance poles can be seen in non-stationary
time-dependent computations when a mass of liquid is added at the front or back of
the free-surface ridge in figure 2, depending on the direction of the growing tail: for
instance, when a discrete mode crosses the essential spectrum from the right of the
essential spectrum to become a resonance pole to the left, the exponentially growing
tail occurs as x → −∞. Such time-dependent computations are beyond the scope of
the present study.

Figures 7 and 8 show the structure of the spectrum for Ma = 35 and Ma = 60
respectively and the parameter values in figure 6. For Ma = 35 the discrete eigenvalue
that bifurcates from the resonance pole at β = 0.009 approaches the imaginary axis of
the spectral plane as β increases and is eventually located at the origin of the spectral
plane for β = 0.03. Further increase of β causes this discrete mode to move to the left
(not shown). When the Marangoni number is increased above the value of 35, the
discrete eigenvalue that bifurcates from the resonance pole becomes unstable for all β
larger than 0.006. Notice the existence of two discrete modes for β = 0.02 in figure 8.
Eventually the stable discrete mode will collide with the essential spectrum for larger
values of β and will bifurcate into a resonance pole. These computations reveal the
existence of a critical Marangoni number, Ma = Ma∗, above which the base state
becomes linearly unstable with respect to disturbances in the spanwise direction. For
the parameter values in figures 6–8, Ma∗ = 35. This observation is consistent with the
experimental findings by Kabov et al. (1996, 1999), Kabov (1998) and Scheid et al.
(2000) which clearly indicate that the instability develops at a certain critical value
of the heat flux from the solid boundary to the liquid. Notice that in the experiments
the heater has a finite size in the transverse direction and as a result, in some cases,
the thermocapillary instability starts from the ends of the heater. With a finite heater,
it is likely that the end effects will produce a so-called ‘perturbed’ or ‘imperfect’
bifurcation from the ‘perfect’ laterally infinite case with the spanwise modes starting
from the ends and then filling the domain in the transverse direction. Such finite size
effects due to lateral boundary conditions at or near criticality are discussed by Fauve
(1998).

Figure 9 depicts the dispersion relation λ = λ(β) for the (dominant) least-stable
eigenvalue λ associated with the discrete part of the spectrum. As we have already
pointed out there is a critical Marangoni number Ma∗ for the onset of the instability.
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Figure 7. As figure 6 but for Ma = 35. (a) β = 0, (b) β = 0.009, (c) β = 0.03.

At this Marangoni number, a critical wavenumber, say βc, becomes unstable first
(for the case in figure 9, βc ' 0.03); at slightly higher values of Ma there is a narrow
band of unstable wavenumbers (hence the situation here looks similar to the classical
Rayleigh–Bénard convection). For Ma > Ma∗ the band of unstable wavenumbers
increases and the most amplified eigenmode occurs at wavenumbers larger than βc.
Figure 9(b) shows the dispersion relation of figure 9(a) in the region of small β. Also
shown are the resonance poles (dashed lines) as a function of β and for different
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Figure 8. As figure 6 but for Ma = 60. (a) β = 0, (b) β = 0.006, (c) β = 0.02.

values of the Marangoni number; as we have already pointed out these resonance
poles are true discrete modes for the eigenvalue problem (31) but not the original
problem (23a).

In figure 10 we plot the maximum growth rate, λmax, and the maximum growing
wavenumber, βmax, as a function of Marangoni number for the dispersion relation
curves in figure 9. Increasing Ma increases λmax, making the bump profile in figure 2
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Figure 9. (a) Dispersion relation, λ = λ(β), for the discrete part of the spectrum as a function of
Marangoni number. All parameter values are the same as figure 4. (b) Dispersion relation for the
discrete part of the spectrum in the region of small wavenumbers. The dashed lines correspond to
resonance poles which eventually bifurcate to discrete eigenvalues.

more unstable. At the same time, increasing Ma results in decreasing the wavelength,
say Lmax (= 2π/βmax), of the rivulets developed in the spanwise direction.

Let us now convert our predictions for the instability wavelength to dimensional
quantities. In the absence of experimental values for Biot numbers of liquid–gas
interfaces we take Bi = 1 (as in all our figures) and we refrain from a quantitative
comparison with the experiments by Kabov et al. (1996, 1999), Kabov (1998) and
Scheid et al. (2000). We notice, however, that our definition of the Biot number in (7),
Bi = αh0/k with α the heat transfer coefficient at the free surface, h0 the film thickness
away from the bump and k the thermal conductivity of the liquid phase, implies that
the (dimensionless) Biot number is proportional to the film thickness h0 with the
proportionality coefficient α/k a function of the fluid properties. This dependence on
h0 was made explicit by Goussis & Kelly (1991) in their study of the thermocapillary
instability of a flat film on a uniformly heated inclined plane. In terms of the variables
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Figure 10. (a) Maximum growth rate, λmax, and (b) maximum growing wavenumber, βmax, as a
function of Marangoni number for the dispersion relation curves in figure 9.

used here, Goussis & Kelly define the Biot number as Bi′ = (α/k)(3ν2/g sin θ)1/3 such
that Bi = Bi′Re1/3 with Bi′ depending on the physical properties of the fluid only (like
the Kapitza number γ). Hence, changing h0, or equivalently the Reynolds number,
implies changing the Biot number.

For water at 25◦, κ = 5× 10−5 kg s−2 K−1, k = 0.607 W m−1 K−1, cP = 4.18 J g−1 K−1,
µ = 10−2 g cm−1 s−1, ρ = 1 g cm−3 and σ = 61 dyn cm−1 (see for example Reid, Praus-
nitz & Sherwood 1977). This gives Pr ' 7 which is the value used in all our fig-
ures. With Re = 1, the film thickness away from the bump can be computed from
h0 = (3ν2Re/g sin θ)1/3 (see the definition of Reynolds number in (3a)) which with
θ = π/2 gives h0 = 0.067 mm. From the definition of Marangoni number in (6) and
for a temperature difference ∆T = 10 K, well within an achievable range, we obtain
Ma ' 35 which is the critical Marangoni number shown in figures 9 and 10 (any
∆T less than 10 K will not induce an instability). From figure 10(b), βmax ' 0.03 and
hence the dimensional wavelength for the instability in the transverse direction is
L̃max = (2π/βmax)h0 ' 14 mm.
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Pr Ma∗ β∗max

0.1 31.012 0.028
5.0 31.707 0.0281
7.0 35.02 0.03

10.0 38.18 0.033
20.0 57.101 0.051

Table 1. Variation of critical Marangoni number, Ma∗, and maximum growing wavenumber at
criticality, β∗max, as a function of Pr for γ = 2850, θ = π/2 and Re = Bi = 1.

Table 1 gives the variation of the critical Marangoni number, Ma∗, and maximum
growing wavenumber, β∗max, as a function of Prandtl number for γ = 2850, Re = 1
and Bi = 1. As Pr (or equivalently Pe = Pr Re) decreases, the critical Marangoni
number decreases which means that the system can be destabilized more easily. This
is due to large temperatures on the free surface – at very small Pe the free-surface
temperature distribution is not convected downstream (a simple comparison of the
temperature profile in figure 3 with the distribution in (16) shows that indeed Ts in
figure 3 is smaller than Ts from (16)). Hence, the instability persists in the region
of small Péclet numbers where the temperature distribution on the free surface is
adiabatically slaved to the film thickness. The limiting critical Marangoni number as
Pr → 0 for Re = Bi = 1 is Ma∗ ' 31.

For a 25% by mass mixture of ethanol in water used in the experiments by Kabov
et al. (1996), κ = 0.11 × 10−3 kg s−2 K−1, k = 0.438 W m−1 K−1, cP = 3.745 J g−1 K−1,
µ = 1.94 × 10−2 g cm−1 s−1, ρ = 0.95 g cm−3 and σ = 34.53 dyn cm−1 (see Reid et
al. 1977 on how to estimate properties of aqueous solutions). These values give
γ ' 655 and Pr ' 17. We can now use our computations in figures 9, 10 and
table 1 to obtain the instability wavelength for this liquid. As already mentioned,
although these computations are for water which has γ = 2850, they are valid for
all cases with WeRe = 4110 – recall that the governing dimensionless groups are
WeRe (both Weber and Reynolds numbers appear always as a product), Ma, Pe
and Bi. Similarly, table 1 gives the variation of Ma∗ and β∗max as a function of Péclet
number (Pr appears always as a product with the Reynolds number). Hence, the
results of figures 9, 10 are valid for 31/3γ/Re2/3 = 4110, Pe = 7 with θ = π/2 while
the results in table 1 are valid for 31/3γ/Re2/3 = 4110 and different Péclet numbers.
From 31/3γ/Re2/3 = 4110 and γ = 655 we obtain Re = 0.11. From the definition of
Reynolds number in (3a) then we obtain h0 = 0.05 mm. Table 1 shows that the critical
Marangoni number for Pe = RePr ' 1.87 is Ma∗ ' 31 which from the definition
of Marangoni number in (6) gives ∆T ' 2 K – any temperature difference less than
this value will not induce instability. From table 1 we also obtain the maximum
growing wavenumber at criticality, β∗max ' 0.028. The instability wavelength is then
L̃max = 2π/β∗maxh0 ' 11 mm, of the same order of magnitude as the value of ' 6 mm
for Re = 0.4 obtained in the experiments by Kabov et al. (1996). The agreement
becomes much better if we assume a larger ∆T , for example temperature differences
as large as 10 K or even larger were observed in the experiments. With ∆T = 10 K,
we obtain Ma ' 140. With this value of Marangoni number and with Pe ' 1.87
the solution of the eigenvalue problem gives β∗max ' 0.065 which in turn gives
L̃max ' 5 mm.

Notice that in the experiments a constant flux is imposed at the solid boundary
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instead of specifying a temperature distribution as we did here. The IBL treatment of
a constant flux condition is more involved and the final equations more complicated
than (13a–d ). But even with a flux boundary condition on the wall, we cannot have
a quantitative comparison with the experiments since, as already emphasized, the
heat transfer coefficient and therefore the Biot number is not known. For this reason,
comparisons with experiments for free-surface thermocapillary flows are mainly qual-
itative (see Nepomnyashchy et al. 2001). As the Biot number is unknown, different
authors assume different values for this dimensionless group. For instance, the heat
transfer coefficient used by Scheid et al. (2001) gives Bi = 0.1 which corresponds
to Bi′ = 0.13 – recall that this is the Goussis & Kelly (1991) definition of the Biot
number. Goussis & Kelly in their study of the linear stability of a film falling down
a uniformly heated plane chose the value Bi′ = 10. The same value was recently
adopted by Kalliadasis, Demekhin & Velarde (2002) in their study of the nonlinear
instability of the Goussis & Kelly problem.

5. Summary
We have considered the thermocapillary instability of a falling liquid film heated

from below by a heating device on the substrate. The transverse dimension of the
heater is much longer than its width in the streamwise direction. The heating generates
a temperature distribution on the free surface which induces surface tension gradients
that drive the fluid away from the heated region. This thermocapillary flow was
modelled by using the IBL approximation of the Navier–Stokes/energy equations
and free-surface boundary conditions. The IBL approximation results in a system of
two coupled partial differential equations for the evolution of the local film height
and free-surface temperature distribution in time and space.

Two-dimensional steady states of these equations are reported for a Gaussian
temperature distribution on the wall and different values of the Marangoni number.
In all cases, the free surface develops a bump in the region where the wall temperature
gradient is positive. The height of this bump was found to be an increasing function
of the Marangoni number. In addition, we computed the temperature distribution on
the free surface and demonstrated that for finite Péclet numbers the temperature field
is convected downstream resulting in a free-surface temperature distribution with a
maximum in the region where the wall temperature gradient is negative.

We then analysed the linear stability of the steady states with respect to disturbances
in the spanwise direction. The stability problem was formulated in a way that allowed
for disturbances that did not necessarily decay at the infinities. In this way, we were
able to analyse the complete spectrum of the resulting linear eigenvalue problem,
which proved to be particularly subtle in its structure. We found that the operator
of the linearized system has both a discrete and an essential spectrum. The discrete
spectrum consists of eigenfunctions localized around the base state while the essential
spectrum consists of eigenfunctions which approach bounded oscillations at the
infinities – the essential spectrum is described by the dispersion relationship of the flat
films away from the bump and hence it is always stable.

For a given Marangoni number, the discrete spectrum only exists for disturbances
with wavenumber above a critical value. At this value, a resonance pole, with a corre-
sponding eigenfunction that has unbounded growth at one of the infinities, crosses the
essential spectrum and becomes a discrete eigenvalue. Hence, the discrete spectrum is
born out of resonance poles at specific values of the wavenumber for the disturbances
in the spanwise direction.
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Our main result is that, for small values of the Marangoni number, the dis-
crete spectrum is always stable, while at a critical Marangoni number a discrete
mode becomes unstable and for values of the Marangoni number larger than this
critical value, there is a band of unstable discrete modes. We have computed the
critical Marangoni number and the maximum growing wavenumber at criticality as
a function of Péclet number and showed that small Péclet numbers decrease the
critical Marangoni number and hence destabilize the system more easily. Finally,
we attempted to compare our theoretical predictions with available experimental
data. However, the absence of experimental values for heat transfer coefficients at
liquid–gas interfaces have prevented us from a quantitative comparison with the ex-
periments.

There are a number of interesting questions related to the analysis presented here
and our theory can be extended in several directions. For example, it would be
interesting to compare the IBL approximation for the energy equation developed
here to Benney’s equation with the temperature distribution given by (16) adopted
by Joo et al. (1991) and Scheid et al. (2001). Preliminary analysis by Kalliadasis
et al. (2002) indicates that Benney’s equation gives unrealistic solutions, including
finite-time blow-up behaviour, in certain regimes of the parameter space. The same
authors have also scrutinized the validity of the linear approximation in (12) and
demonstrated that the linear stability of the flat-film solution with this temperature
distribution is in good agreement with the Orr–Sommerfeld stability analysis of the
full energy equation. The agreement becomes better when (12) is replaced with a
parabolic temperature distribution (in which case of course equation (13d) for the
free-surface temperature distribution is more complex). Another related problem is
the IBL treatment of a constant-heat-flux boundary condition at y = 0 instead of
specifying the temperature distribution at y = 0. In this case the weight function
of (2c) is simply 1 but the final equations are more complicated than the system
(13a–d ). Of particular interest would also be a detailed examination of the effects
of inertia on the thermocapillary instability. For this purpose, we would have to
use the full IBL equations (13a, b) instead of their simplified versions (14a, b) which
assume that the flow rates q and p are slaved to the film thickness h. Other related
issues include three-dimensional numerical simulations of the full IBL equations
(13a–d ) for the nonlinear stage of the thermocapillary instability and the devel-
opment of a systematic approach to obtain the Biot number as a function of the
other dimensionless groups, including a possible dependence on x (such a depen-
dence was pointed out by Kabov et al. (1996); preliminary analysis assuming a
fully developed laminar boundary layer in the gas phase indicates that Bi is a
decreasing function of x). This and other problems will be addressed in a future
paper.

S. K. is grateful to Professor V. V. Pukhnachev for introducing him to the problem
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Chemical Engineering Department at Leeds University for hospitality and acknowl-
edges financial support from the Engineering and Physical Sciences Research Council
of England, through a Visiting Fellowship, grant no. GR/R61772/01.
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Appendix. The coefficients of the eigenvalue problem
The coefficients Si and Gi in (24) depend on the base-state solution of (17a, b) and

are parameterized by the spanwise wavenumber β:
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S1 = E1, S2 = E ′1, S3 = E2 + iβE5, S4 = E3 + E ′2,

S5 = E ′3 + iβE6, S6 = E4, S7 = E ′4, S8 = iβE7,

where the prime denotes differentiation with respect to x and
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